ON THE STABILITY OF MOTION
(OB USTOICHIVOSTI DVIZHENIIA)
PNN Vol.26, No.5, 1962, pp. 885-895

V.M. MATROSOV
(Kazan')

(Received December 21, 1961)

In this paper sufficient indications of asymptotic stability and insta-
bility are obtained, generalizing the known criteria of Liapunov {1] by
replacing the condition of sign-definiteness of the derivative of the
Liapunov function by & less rigorous condition of its uniformity of sign
(with some requirements for the set where the derivative becomes zero).
comes zero).

Generalizations of this type were obtained in the case of steady
motion (in the sense of fl]) by Barbashin and Krasovskii {2] and also by
Tuzov [3}, and for the case of periodic motions by Krasovskii {4}. Here
the general case of nonsteady motion is considered, It is easy to con-
vince oneself by example*, that the generalizations of the mentioned
authors, in the forms [2,3,4] do not extend to that case. In the obtained
criteria two Liapunov functions are used. As is known, the first theorem
on instability with two functions was proposed by Chetaev [5]. For the
case of nonuniform asymptotic stability, the requirement of an infinitely
small higher limit is also removed, which leads to the modification of

* Thus

LA YOL (pr>o,

e pdt<oo)

S 38

The general solution
3
x=xoexp[—5p dz}
iy
shows that the solution x = 0 is nonasymptotically stable, although
for V= 1/2 zz, the derivative V = - pz2 < 0 and the semi-trajectories,

with thg exception of x = 0, are not contained entirely in the set,
where V = 0.
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the corresponding theorems of Krasovskii [6], Zubov [7], Reisig [8].

The application to nomstatiomary gyroscopic systems with dissipation
is discussed,

1. Let the equations of the nonautonomous motion be given by

d:
e X gy D) =t (1.4)

in which the functions,Yi in the domain [
...+ <l H:, t>0 (H=const>0)

are defined, continuous and bounded as well as their partial derivatives

aXi/'axj, 9X;/dt, as
| Xi(zy, - . .y 28, )| <X (X = const > 0)

In such a case, to each set of numbers (%y0s -++s Zpg, tg) €T, there
corresponds a single system of functions which are continuously differ-
entiable with respect to ¢t

2t X0y - « -y Tngs Ly) i=1,...., n)
and satisfying in [ to the system (1.1) and to the initial conditions
Zi (fgy Tygr + « -Tngs 5 Lo) = Tip (i=1,...,n
Let also
Xi(0,...,0,0)=0 (=1..,n)
that is, the system (1.1) admits the autonomous motion
x2; =0, Z,=0,...,8, =0 (1.2)

The set of the n numbers (x,, ..., z,) is called point x in the n-
dimensional Euclidian space F". The number

p(x,2% =V (x,— 2,°) -+ ...+ (tn— 2°)

(o (z, M) = inf [p (z, 2°), z° €M)

is called distance of the point x to the point x° in E" (corresponding
to the elements M C E®).
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The norm of the vector x appears as lx)l = \l(xl2 + ...+ xnz), The
set of functions

x (t, Ty, to) = {1?1 (t, T1gy o ¢ oy Tngy to), e voey I (t, Lygy » « vy Tngs to)}
is determined in the domain (H)

hzl<H

of the space E" of the nonautonomous motion.

We shall study the Liapunov functions V(x, t), W(x, t), determined
(existing and well defined) and continuous in I, as well as their de-
rivatives V(x, t), W(x, t), with respect to time t, taken by virtue of
systen (1.1), whereupon V(0, t) = 0, V(0, t) = 0 (refer to [1]), and
also the functions V*(x), V'(x) are definite and continuous in (H).

The set of the points x € (H), for which V*(x) = 0, will be repre-
sented by E(V* = 0).

Definition 1.1. #(x, t) 1s definitely not equal to zero in the
ensemble E(V* = 0) if for any numbers o and A(0 < « < 4 < H) numbers
rila, 4), &(a, 4) (0 <r, <d;, £€>0), can be found such that
Wz, )] > € for a< |2l <A plx, EO = 0)) <rp, t2>0.

Theorem 1.1. Let there be functions V(x, t}, W(x, t), having in [ the
following properties.

1} The function V(x, t) is positive definite and admits an infinitely
small upper limit.

2) The derivative V(x, t) < V*(x) < 0.
3) The function W(x, t) is bounded.
4) W(x, t) is definitely not equal to zero in the ensemble E(V* = 0).

Then the autonomous motion (1.2) of the system (1.1) is asymptotically
stable with respect to x, t,.

Proof. Let us assume the conditions of the theorem are satisfied. By
virtue of the theorem of Liapunov on the stability of motion, defined
more precisely by Persidskii for the case of uniform stability, the
autonomous motion (1.2) of the system (1.1) is stable with respect to ty
and for any number A(0 < A < H), a number A(4) (0 < A < A) can be found
such that for any

5, =>0, |n)<A (1.3)
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for all t > t, we shall have || (¢, x5, t;) || < 4, whereupon
V (2o, 2o) SSUP [V (%o, 20). 1,20, 7| <A <inf [V (z, 1), t >0, [z]|= A] =V,

There remains to prove that, to any arbitrary small number p(0<pu<})
there corresponds a positive number T(4, u) such that under conditions
(1.3) for all ¢t >t, + T there will be || x(t, x5, ty) || < u. Taking into
consideration the monotonicity of the function V(=x(t, %q, ty), t), it is
enough to establish the existence of a number T*(A, p) such that for any
nonautonomous motion with initial condition (1.3) at the instant t* =
tg + T there will be

V(z(t*, 2o, 8p), t*) it [V (z, 8), t 2> 0, |z >p, [zl < A] =V,

As V(x, t) admits an infinitely small upper limit, then on V, a number
a(p, A)(0 < a < ) can be found such that for t >0, ||x|| < a there will
be V(x, t) < Vﬁ. For this reason, to establish the existence of T* it is
enough to find a positive number T'(a, 4) such that for any nonautonomous
motion with initial conditions (1.3), at some instant of time t’(t, <
t' <ty + T'), we shall have in it I =t 9, ty) I <a.

We shall consider any nonautonomous motion =x(t) = x(t, xg, tg) with
the initial condition (1.3) and we shall establish some of its properties

(8) If p(x(t), z(T)) =>r > 0(t > 1), then
t—T> 4
T T XV
From the formulas of finite increments

dzx,;
70— = 1 =| S [e—n< X9

therefore, for r<<Y[ai(®)—n (P + ... + [z, (1) —=z,(V)]* we have
r<XV n(t—r)
By virtue of (3) there exists a positive number
L=sup(|W(z, )], t>0,|z] < 4)
In accordance with (4) it is possible to find some positive numbers

ri(a, Ay, €(a, A) such that in the ensemble U C (H), where a‘<!|xl|< A,
p(x, E(v* =0)) < r,, for any t >0 there will be

| W (2, )| > E.
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(b) The nonautonomous motion x(t) cannot stay permanently in the set
U, during an interval of time equal to 2L/§.

Let us assume x(T) € U. For z(t)(t > T)
t
W(t)—-W(r):—_SWdt
T
and as long as the motion of x(t) is in U, the sign of the derivative

W(t) does not change; therefore

1
WO+ @I>{ 171> Ee—v

T

But this inequality can be realized simultaneously with |W!<§ L only
for

t<t42L/%

Thus, there exists a number T¢(7 < T* <71 + 2L/§) such that for t = T+
the motion is on the limit of the contour [U] of the set U.

(c) If at the instant T
e<fz(®<A4, p(k) EV*=0)<rn/2

and for all T < t< 7 + 2L/, there will be H «(n || > «, then at the in-
stant T*(T < T* < T + 2L/§), when

a<llz (¥} < 4, P (x (t%), EWf*=0)=nr
we shall have
&r

V() <V (t)— a(a, A) =V >0

e=inf [|V* @) |,a<|z|<{4,p(@ E(V*=0))2>r/2]>0

Actually, under the given initial conditions, an instant v (7<1 <7%
can be found such that * *

a<fz(v,)l< 4, Pl(ry), E(V*=0))=r/2
and for all T, < t <T*, we shall have
a<]z(@)]< 4, rn/2<p (), EV*=0)<n
There follows, in agreement with (2)
VOISV )< —e

But, as is easily noticeable, p(x(T*), z(T‘)) 2 ry/2, whereupon,
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taking (a) and (b) into consideration

.. T
£~ *ox VY u
Therefore
Ty hAd T
7 (v 4 ’ i s Yy 5 Ery
V(tt) —1 (1:)=S vt + S “"<S VidrS —e(r —1,) < — —EL
T N Tu ZXV"

Let us consider the sequence of instants of time
t =ty k2L /§ (k=0,1,2,...)

(d) If the motion z(t) on the interval of time tk<§ t<§tk+2 is per-
manently in the domain o« < || x¢t) !| < 4, then

V(tepa) SV (8) — 2

In fact, if for t, < t N t,,, we have constantly

a<lz@l<4, pE@), EV-=0)>rn/2
then
b 2Le
V(terd ~V (60 < Ve < — 22 <—a
Y

But if we have tk<§ T Sgtk+1 such that
allz() <A, p(x(x), E(F*=0)<r/2

then in accordance with (b) a value 1*(7 < T* treg), can be found, in
the presence of which
pz(c*) E(V*(@)=0)=n
and in agreement with (c)
VE) SV (n—asV(g)—a
and therefore also
Vv (tk+2) SVEn<svy)—a

We shall choose an arbitrary integer &’ ;=Vh/a > 0 and shall take
T = typ’(x, A). If it is assumed that for all ¢, St Syt T’ we have
a < || z(t) || € A, then in agreement with (d)

Vit ) SV (%o b)) —ka <V, = Ka0

which is incompatible with the condition (1).
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Thus, t'(to <t ty + T’y can be found such that || z(t") || < «,
which proves the theorem.

. We shall denote by Et(V = 0) the set of points x & (H) for which
V(x, t) =0 for a given t € [0, @),

Definition 1.2. @Kx, t) is definitely not equal to zero in the sets
E,(V =0) if for any numbers « and A(0 < o < A < H) positive numbers
I(a, A), &€(a, A) can be found such that

(W (2, )] >E tor a<llz]|<4, |[V(z t)|<Lt>

Theorem 1.2, Let there be functions V(x, t), W(x, t) having in [ the
following properties.

1) The function V(x, t) is positive definite.

2) The derivative V(z, t)<X 0, and the partial derivatives oV/ox,
ov/dt, 32V73x38xi, BZV/Bxsat, 3%V/3t? are continuous and bounded.

3) The function W(x, t) is bounded.
4) W(x, t) is definitely not equal to zero in the sets Et(V = 0).

Then the autonomous motion (1.2) of the system (1.1) is asymptotically
stable with respect to x,, t,.

Note. Theorem (1.1) for X;(x, t) continuous in (H) with respect to
t € {0, =) and Theorem (1.2) admit some simplifications.

In fact, if the autonomous motion (1.2) of the system (1.1) is asymp-
totically stable with respect to zq, ty, then, as shown by Malkin [9].
in some neighborhood of the autonmomous motion (Ho)[(Hb)] C (B
t € (0, ®), there exists a positive definite function V(x, t) admitting
an infinitely small higher limit, and the derivative of which, in accord-
ance with (1.1), is negative definite. If, furthermore, the functions
Xi(x, t) are continuous in (H) with respect to t € (0, ), then, as shown
by Krasovskii [4], the mentioned function V(x, t) has continuous partial
derivatives of any order with respect to all variables, whereupon these
derivatives are uniformly bounded in the domain (Ho) for t € (0, ™).
Taking, for instance, W(x, t) = V(x, t), we get two functions, satisfy-
ing for x € (H;), t € (0, @), the conditions of Theorems (1.1) and (1.2).
As we consider the asymptotic stability in the semnse of Liapunov [1,9,10]
(local), we get a contraction of the domain of existence of the function,
which is not important compared with T.

Definition 1.3. Wz, t) is strictly not equal to zero in the set
E(V* = 0), if for any numbers o and A(0 < a < 4 < H) it is possible to
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find a number r (a, 4)(0 < r, <a) and a continuous function §,(t) such
that for any t >0

0

L (0)>0, & (ndr = = (1.4)

t

and in the set, where o < lix!l <A, p(x, E(V* = 0)) < ry, t =0, we shall
liave

W (2,0 > & O

Theorem 1.3. Let there be functions V(x, t), W(x, t) having in [ the
following properties:

1) The function V(x, t) is positive definite and admits an infinitely
small higher limit.

2) The derivative V(x, t) <0 and in each domain t 20, « < llz]| <1,
there will be V(x, t)<C oy (t)V*(x), where V*(x) {0 and 9,(t) is a con-
tinuous non-negative function of t such that for any infinite system S
of closed non-intersecting intervals of the semi-axis [0, ®) of an
identical fixed positive length, we have

&(p; (¢) dt = o

3) The function W(x, t) is bounded.
4) W(x, t) is strictly not equal to zero in the set E(V* = 0).

Then the autonomous motion (1.2) of the system (1.1) is asymptotically
stable with respect to x,.

Definition 1.4. W(x, t) is strictly not equal to zero in the sets
E,(V,= 0), if for any numbers o and A(0 < « < A < /) a positive number
I(«, 4) and a continuous function §_(t) can be found such that for any
t>0

0

E () >0, & ()dr =

1

and in the set, where « < ||x|| < A4, |V(x, t)] < I, t >0, we shall have
[ Wz, )| > & @)

Theorem 1.4. Let there be functions V(x, t), Y(x, t) having in [ the
following properties:

1) The function V(x, t) is positive definite.
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2) The derivative V(x, t) <X 0, and the partial derivatives BV/axs,
JV/at, 32V73x33xi, BzV/Bstt, 2V/3t? are continuous and bounded.

3) The function W(x, t) is bounded.
4) W(x, t) is strictly not equal to zero in the sets Et(V = ().

Then the autonomous motion (1.2) of the system (1.1} is asymptotic-
ally stable with respect to x,.

Definition 1.5. The function W(x, t) admits a higher limit, infinitely
small in the set E(V* = 0), if it is limited, ¥(x, t) = 0 for
x € E(V* = 0), t>>0, and if for any given small numbers !, «, A(l > 0,
0 < a<A<H apositive number r’ can be found, such that for
a < llzl] <A, plx, E(V* =0)) <r’, t>>0 we shall have |W(x, t)] < L.

Theorem 1.5. Let there exist functions V(x, t), W(x, t), having in I
the following properties:

1) The function V(x, t) is positive definite.

2) The derivative V(x, t) <0 and in each domain t >0, « < Hxll < H
we shall have V(x, t) <oy (t)V*(x), where V*(x) <0, and ¢,(t) is a con-
tinuous non-negative function such that for any given infinite system S
of closed non-intersecting intervals of the semi-axis [0, ®) of an
identical fixed positive length, we have

5
3) The function ¥(x, t) admits a higher limit, infinitely small in
the set E(V* = 0).
1) Wx, t) is definitely not equal to zero in the set E(V* = Q).

Then the autonomous motion (1.2) of the system (1.1) is asymptotic-
ally stable.

The proofs of Theorems (1.2) to (1.5) come as modifications of the
proof of Theorem (1.1).

The preceding definitions can be generalized to the case of "global"
stability, if analogously to [4], an estimate of the domain of attrac-
tion of the autonomous motion is introduced in the conditions of the
theorems.

2. Theorem 2.1. Let there be functions V(x, t), W(x, t) possessing in
I the following properties:

1) The function V(x, t) admits an infinitely small higher limit and
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for any ¢t >0 it is possible to find points x lying in any given small
neighborhood of the autonomous motion and such that in them V(x, t) > 0.

2) The derivative V(x, t) 2>0 and in each domain t >0, a < ||x]| <
A < H there will be V(x, t) > (¢)V'(x), where V'(x) >0 and ¢,(t) is a
continuous non-negative function of t such that for any infinite system
S of closed non-intersecting intervals of the semi-axis [0, @) of an
identical fixed interval, we have

5

3) The function W(x, t) is bounded.
1) W(x, t) is strictly not equal to zero in the set E(V' = 0).
Then the autonomous motion {1.2) of the system (1.1) is unstable.

Proof. We shall assume that the conditions of the theorem are satis-
fied, but the autonomous motion is table, i.e. for an 4 and ¢; a A>0
can be found such that in each nonautonomous motion, with the initial
values (1.3) for t = t;, we shall have

fa@, x, to) | <A< H
Under the conditions (1.3) in accordance with (1), xo‘, t, can be
found such that

V (20*, 1) >0
We shall consider the disturbed motion x(t) = x(t, xo', t,) and its
properties.

(a) If p(x(t), =(T)) > r for t > T, then t — T >r/X n,

(b) For every t > t, there will be a < Il ¢ty || < A, where o is some
positive number.

Actually, this is in agreement with our assumption H z(t)’| < 4, but
in such a case V’;ao, loe. V() 2 V(zg®, ty) > 0. As V(xz, t) admits an
infinitely small higher 1imit, then for the numbers V(zo', ty) >0a
number « > 0 will be found such that for all t 2> 1t,, ]|x” < a we shall
have V(x, t) < V(xy*, t;); consequently, Il x(t) | <o is not possible.

In accordance with (4), a number r(a, 4)(0 < ry €< o) and a continu-
ous function Eu(t), satisfying the conditions (1.4) can be found such
that for p(x(t), E(V' =0)) < r;, we shall have

| W) =E, ().

(¢) If p(x(T), E(V' =0)) < ry, then T* > 7 will be found such that
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PE(E), E(VV=0)=n

For p(x(T), E(V' = 0)) < r) for xz(t) (t> 71)
t
W(t)—W(t)=SWdt
T

and while p(x(t), E(V' = 0)) < r,, the derivative ¥(t) does not change
its sign; therefore,

t t
wor+iwm s\ ima={Loa

T <

But, by virtue of (1.4) and the boundedness of W(x, t), this cannot
be for all t > t,.

(d) 1f p(=(T), E(V' = 0)) < r /2, then for t = T*, when p(x(T*),
E(Vv' =0)) =y

<*

V(r*)>V(r)+s'S 9, (1) dt (1<T"=7.—2xr11/;)

¢/ =inf [V' (2), a <|lz[|< A, pl2, E(V'=0))>r1/2]1>0

In fact, under the given conditioms, T < T, < T* can be found such
that

P(x(Te), E(V=0))=r/2
and for 'r.< t < 1* we shall have

n/2gLp(@), E(V' =0)<n

i.e. in accordance with (2)

V)29, )V (z () >0, (t)
Therefore
1‘
V- —V (> e'g 9, (t)dt
Te
But, as it is easy to notice, p(x(T%), z('r‘)).> r1/2. whereupon, in
agreement with (a),
aY
2XVn
(e) There is not any number T° > t, such that for all ¢ > 1° we would
have

TT— T — T, =
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pE@EV'=0)>r/2
In fact, if such a T° existed, then for all t > 7° we would have

i
9&)1’(«:")-{“3" P, (t) dt

c

H
VO =)+

°

and in accordance with (2) we have V(&) - ® for t = ®, which is not com-
patible with the condition of the boundedness of V(t), resulting from
(1) and (b).

In accordance with (e) for any T 8 T > T;* can be found such
that

PE(Ty), E(V =0)< /2

In accordance with (c) there corresponds to it 7,..,* > T4y Such that
p (e (T, BV =0)=n

We shall consider the infinite sequence of numbers

tq<11<71*<..-<1'i<'€i*<...
In accordance with (2) and (d)

&

i i
r
VeV e | o 0 .
i 127 o jzzl“j"q)a( (J\ ; f MV")

The infinite system of segments [7,**, 7] satisfies the condition of
(2) for the system S, therefore, the last sum increases indefinitely with
i, i.e. ¥V(7;*) = ® for i~ ®. But this is incompatible with the condition
of boundedness of the function V. The contradiction shows that the assump-
tion of stability is wrong, which proves the theorem.

Theorem 2.2. Let there be functions V(x, t), W(x, t) having in " the
following properties:

1) The function V(x, t) is such that for any t >0 it is possible to
find points x, lying in any small neighborhood of the autonomous motion,
in which V(x, t) > 0.

9) The derivative V(x, t) >0 and the partial derivatives 3V/3xi,
/3, 32V73xi3xj, aﬁvyax;at, ?V/3t? are continuous and bounded.

3) The function W(x, t) is bounded.

4) W(x, t) is strictly not equal to zero in the sets Et(V = 0).
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Then the autonomous motion (1.2) of the systems (1.1) is unstable.
The proof comes as a modification of the previous one.

The autonomous motion (1.2) of the system (1.1) is called absolutely
unstable if, for amy A, x,, t, satisfying the conditions 0 < A <H,
o< ||x0|] < A4, t, > 0, a positive number T can be found such that
I 2(ty + T, x5, to) [|= A. It is easy to prove the following gemeraliza-
tion of the criterion of Dubovshin [10]. If the conditions of Theorems
(2.1) or (2.2) are satisfied and V(z, t) > 0 for all t >0, 0 < ||| <&,
then the autonomous motion (1.2) of the system (1.1) is absolutely un-
stable.

3. Let us consider some applications. A, A symmetrical, heavy, rigid
body with one point fixed, under the presence of resistance forces of
the medium.

%ith the usual designation, the equations of motion have the form

Ap+(C— A gr= Pz, — 3R/ dp, f1=rTs— qTs
Ag + (A—C) pr = — Pzoy1 — OR | 8g, Ta=Pis—
C;:Mz(t, r), '\:8=q71—P'T2

Here R is a homogeneous function of p, g of order m »2, the coeffi-
cients of which are continuous and limited functions of t. Let the moment
Mz with respect to the axis of symmetry 2 consist of the moments of the
resistance forces, depending on r, t and the moment of the driving force
given as a function of t.

The third equation determines r as a function of time r(t¢, rg: ty)
which we shall assume continuous and bounded. The equations of motion
admit the solution

PZO.' q=0'r=r(tvr9yt0)r TIZO: T2:0y TS=1 (31)

describing the irregular rotation of the body around the vertical axis
of symmetry.

The functions

1 1
TAP+ ¢ — g P+ 12"+ 1%, W=A4(p12a—qn) (1*=1—1s20)

V=
have, by virtue of the equations of the nonautonomous motion (taking
into consideration the trigonometric relation y12 + y22 + y32 =1),
derivatives with respect to time
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Ve=—mR<0,
W =g Palnt+ 18 41 @ — 1)) — 1 (Cor — 50 ) — 1 (Car + 52 ) + 4 .
5 Pao (1 + 14 Y n\Cpr—33 Ta 9"+ap + Arvs (P> + ¢%)

The set E(ﬁ = 0) corresponds to p= 0, ¢ = 0. In it

. 1
W=y5Pouln’+1+172—1]
If 25 # 0, then

. 1
Hﬂ}yPunwmrp=&g=&0<ﬁ<hﬂqﬁ+ﬁ<m<H2

Therefore, by virtue of the continuity of ¥ and the boundaries of the
coefficients, it is possible to find r; > 0, such that

W > P20l owhen 30, 0 <12t 1+ 1< AL, Pk 2

i.e. Wis definitely not equal to zero in the set E(V = 0).

If z4 < 0 (the center of gravity is lower than the point of support),
then the conditions of Theorem (1.1), on the basis of which we conclude
the asymptotic stability (with respect to py, 45, Yy, Yg0r Yo fo) ©f
the autonomous motion (3.1), are satisfied.

If on the contrary gz, > 0, then the conditions of Theorem (2.1) are
satisfied and the autonomous motions is unstable.

B. A nonstationary mechanical system under the action of potential,
gyroscopic and dissipative forces

n
d 8T T _
dt 3, % 2

gﬁdj+~g§;-.57— (i=1,..., n) (3.2)
i=1 i 9;

Here ¢ = (g, ..., 9,)» @ = (4. --.. @,) are combinations of the
generalized coordinates and velocities; T is a positive definite quadratic
form of the velocities; g,;.(q, t) = - gij(q, t) are the gyroscopic coeffi-
cients; R is the function of dissipation and a positive definite quadratic
form of ¢ (full dissipation); U(g¢) is the forcing function, which we

shall assume to be a holomorphic function of g¢

< < a3; () = a (9)
. .. 1 .. ij it
T=g Y agd;, R=5 2 by ( ) = )
2 i, 5=1 7 2 i =1 bi; (g,7t) = by; (g, 1) -
n o
rR>18> 4z B>0, U@ =2 Upm=>2)

i=1 k=m
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where Uk(Q) is a homogeneous function of order k.

Further, Eij' bij are assumed to be holomorphic functions of ¢ with
continuous and bounded coefficients.

The system (3.2) admits the solution

0=0,...,¢,=0, 1=0,..., ¢, =0 (3.3)

Taking V= T - U, we have, by virtue of (3.2)

V=—2R<—Bg*+...+¢)<0
We shall take

n
W = 28 .___.ql
f==1 6q1
By virtue of (3.2)

T oR
i, =1 = 2 % 9

The set E(B(q’1 vt +dn ) = 0) is determined as

a1=0,...,9,=0, g*+... 4+ g I<H
In it

—2‘, _qi E kU,

If this function is sign-definite, then for any o and A(0<a<A<H),
a number § > 0 can be found such that

n
|W1>26>0wheng: =0, g:=0,...,¢,=0, 2< Y g2 < 4
i=]
But by virtue of the continuity of ¥ and the boundedness of the

coefficients, it is possible to find for §, an ry > 0 such that we shall
have |¥| > € > 0 for

n n
@ <D g2+ g < A%, D) A<, 20
i=1 i=1
i.e. ¥ is definitely not equal to zero in the set E(ﬁ(él2 et énz
(=0).

If the functions



1352 V.M. Matrosov

Ulq), D) kU, (q)

h==m

are negative definite, then the conditions of Theorem (1.1), on the basis
of which the autonomous motion (3.3) of the asymptotic stability is uni-
form with respect to the variables g5, g, t,, are satisfied.

If on the contrary U(g) can take positive values for any arbitrarily
small {q;l. ..., |g,!, and the function

(e8]
N
D kUL (g)
K=z
is sign-definite, then the conditions of Theorem (2.1) are satisfied and
by this theorem the autonomous motion is unstable.

The author is thankful to P.A. Kuz’min for his profitable discussion
of the work.
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